

Certified Modeling and Simulation Professional Examination Preparation

Mikel D. Petty, Ph.D. University of Alabama in Huntsville 256-824-6140 pettym@uah.edu

Acknowledgements

- Sponsors
 - National Training and Simulation Association
 - The Boeing Company
- Guidance
 - Modeling & Simulation Professional Certification Commission (exam structure)
 - SimSummit (body of knowledge outline)
- Selected contributors (alphabetical order)
 - Wesley N. Colley, Ph.D. (questions)
 - David C. Gross, Ph.D. (topics, sources, and slides)
 - Gregory S. Reed, Ph.D. (software)
 - John A. Sokolowski, Ph.D. (question review)
 - William F. Waite (topics and sources)

Instructor

- Mikel D. Petty, Ph.D.
 - Associate Professor, Computer Science
 - Senior Scientist for M&S, Info Tech and Sys Center
- Education
 - Ph.D. Computer Science, UCF 1997
 - M.S. Computer Science, UCF 1988
 - B.S. Computer Science, CSUS 1980
- Career summary
 - M&S R&D: UCF, ODU, UAH; 1990-present
 - IT: CSUS, UTEP, GM, UCF; 1980-1990
- Research
 - Modeling and simulation, esp. distributed simulation and V&V
 - > 195 publications
 - > \$16 million total research funding awarded

SACRAMENTO

3

Part 1: Introduction, structure, and logistics

- Introduction
 - Motivation
 - Certification types
- Structure
 - Topics and subtopics
 - Questions and instances
- Logistics
 - Requirements, preparation, and examiniationn
 - Recertification

Part 2: Content survey

- Definitions and concepts
 - M&S terms and attributes
 - M&S categories
- Modeling methods
 - Survey of modeling methods
 - Discrete event simulation
 - Monte Carlo simulation
- Special topics
 - Verification, validation, and accreditation
 - Distributed simulation

Part 1: Introduction, structure, and logistics

Introduction

Motivation

- Certification types
- Structure
 - Topics and subtopics
 - Questions and instances
- Logistics
 - Requirements, preparation, and examiniationn
 - Recertification

The emergence of M&S as a distinct discipline

"Science used to be composed of two endeavors, theory and experiment. Now it has a third component: computer simulation, which links the other two." [Colwell, 1999] [Colwell, 2000]

Dr. Rita Colwell Director, National Science Foundation April 29 1999

CMSP certification background

- Professional certification, in general
 - Indicator of individual expertise and competence
 - Milestone in maturation of professional discipline
 - Exists for law, medicine, project mgt, finance, …
- Professional certification, for M&S professionals
 - CMSP "version 1" 2001, "version 2" 2010
 - Approximately 400 people designated as CMSPs

CMSP organizing principles

- Overseen by M&SPCC
- Quality
 - Traceability to requirements set by M&SPCC
 - Exam questions based on credible sources, periodically updated and improved
- Transparency
 - Open process, clear values
 - Publicly available program data
 - Evidence of compliance with requirements
- Confidence; CMSPs are knowledgeable
- Ethics; ethical use of M&S part of certification

Benefits of CMSP certification for individuals

- CMSP as credential
 - Peers: community-recognized certification of M&S expertise
 - Customers: qualifications discriminator for competitive proposals
 - Employer: professional certification for career advancement
- CMSP as learning experience
 - Preparation for and completion of CMSP examendation enhances M&S knowledge
 - Recertification requirements motivate continuous M&S learning

Part 1: Introduction, structure, and logistics

- Introduction
 - Motivation
 - Certification types
- Structure
 - Topics and subtopics
 - Questions and instances
- Logistics
 - Requirements, preparation, and examination
 - Recertification

Certification types: User/Manager

- 1. Employ and explain key terms, definitions, and concepts in modeling and simulation.
- 2. Apply important principles of modeling and simulation practice, including simulation ethics, business considerations, and related communities of practice.
- 3. Understand and work effectively within typical and important uses of modeling and simulation, including application areas and domains of use.
- 4. Identify, assess, and select relevant simulation technologies, including modeling paradigms and implementation architectures, for a specific application.
- 5. Determine whether the use of simulation is, or is not, appropriate for a specific application.
- 6. Plan, initialize, and execute simulation runs or trials to satisfy project requirements.
- 7. Analyze, interpret, and apply the results of simulation runs in the context of an application.
- 8. Manage aspects of projects involving the use or development of simulation models and systems.

Certification types: Developer/Technical

- 1. Employ and explain key terms, definitions, and concepts in modeling and simulation.
- 2. Apply important principles of modeling and simulation practice, including simulation ethics, business considerations, and related communities of practice.
- 3. Understand and work effectively within typical and important uses of modeling and simulation, including application areas and domains of use.
- 4. Design and develop simulation models of various types, including mathematical, logical, structural, and conceptual.
- 5. Identify the underlying mathematical issues associated with many simulation models, including numerical evaluation algorithms, digital discretization, and numerical precision.
- 6. Implement simulation models as executable software and verify those implementations.
- 7. Validate simulation models using suitable methods and assess the suitability of a model for a specific application.
- 8. Design and implement technical infrastructures needed to support simulation systems.

Part 1: Introduction, structure, and logistics

- Introduction
 - Motivation
 - Certification types
- Structure
 - Topics and subtopics
 - Questions and instances
- Logistics
 - Requirements, preparation, and examination
 - Recertification

Exam topics and subtopics

- Intent: coverage of M&S body of knowledge
- Structure: 8 topics, 54 subtopics
- Content
 - Initially based on SimSummit M&S BoK Index
 - Revised per expert recommendations
 - Revised per source availability and topic testability

http://www.sim-summit.org/

Topic 1: Concepts and context

Essential terminology, foundational concepts, community consensus categorizations, and overarching modeling paradigms; history of the development and use of M&S.

- 1. Concepts and context
 - 1.1 Fundamental terms and concepts
 - 1.2 Categories and paradigms
 - 1.3 History of M&S

Topic 2: Applications of M&S

Important and cross-cutting M&S application types; modeling methods and organizing principles for each.

- 2. Applications of M&S
 - 2.1 Training
 - 2.2 Analysis
 - 2.3 Experimentation
 - 2.4 Acquisition
 - 2.5 Engineering
 - 2.6 Test and evaluation

Topic 3: Domains of use of M&S

Domains in which M&S has found wide use; key modeling methods and applications for each.

- 3. Domains of use of M&S
 - 3.1 Combat and military
 - 3.2 Aerospace
 - 3.3 Medicine and health care
 - 3.4 Manufacturing and material handling
 - 3.5 Logistics and supply chain
 - 3.6 Transportation
 - 3.7 Computer and communications systems
 - 3.8 Environment and ecology
 - 3.9 Business
 - 3.10 Social science
 - 3.11 Energy
 - 3.12 Other domains of use

Topic 4: Modeling methods

Technical aspects of widely used modeling methods; characteristics and suitable applications for each.

- 4. Modeling methods
 - 4.1 Stochastic modeling
 - 4.2 Physics-based modeling
 - 4.3 Structural modeling
 - 4.4 Finite element modeling and computational fluid dynamics
 - 4.5 Monte Carlo simulation
 - 4.6 Discrete event simulation
 - 4.7 Continuous simulation
 - 4.8 Human behavior modeling
 - 4.9 Multi-resolution simulation
 - 4.10 Other modeling methods

Topic 5: Simulation implementation

Engineering principles and practices for developing and validating M&S systems; M&S standards; special models.

- 5. Simulation implementation
 - 5.1 Modeling and simulation life-cycle
 - 5.2 Modeling and simulation standards
 - 5.3 Development processes
 - 5.4 Conceptual modeling
 - 5.5 Specialized languages
 - 5.6 Verification, validation, and accreditation
 - 5.7 Distributed simulation and interoperability
 - 5.7 Virtual environments and virtual reality
 - 5.8 Human-computer interaction
 - 5.9 Semi-automated forces
 - 5.10 Stimulation

Topic 6: Supporting tools, techniques, and resources

Technical infrastructures, M&S resources, and organizations supporting the development and use of M&S.

- 6. Supporting tools, techniques, and resources
 - 6.1 Major simulation infrastructures
 - 6.2 M&S resource repositories
 - 6.3 M&S organizations

Topic 7: Business and management of M&S

Business of M&S and M&S as a business; professional conduct for M&S practitioners; M&S workforce.

- 7. Business and management of M&S
 - 7.1 Ethics and principles for M&S practitioners
 - 7.2 Management of M&S projects and processes
 - 7.3 M&S workforce development *
 - 7.4 M&S business practice and economics *
 - 7.5 M&S industrial development *

* Sources sought for these subtopics.

Topic 8: Related communities of practice and disciplines

Non-M&S topics with which M&S professionals should have some familiarity.

- 8. Related communities of practice and disciplines
 - 8.1 Statistics and probability
 - 8.2 Mathematics
 - 8.3 Software engineering and development
 - 8.4 Systems science and engineering

$$R = 2.59 \times 4 \int \sigma \times \left(\frac{\log^{-1} \left(\frac{ERP_t}{10} \right) \log^{-1} \left(\frac{G_r}{10} \right) \log^{-1} \left(\frac{MDS_r}{10} \right)}{\log^{-1} \left(\frac{FEL_r}{10} \right) F_t^2} \right)$$

Part 1: Introduction, structure, and logistics

- Introduction
 - Motivation
 - Certification types
- Structure
 - Topics and subtopics
 - Questions and instances
- Logistics
 - Requirements, preparation, and examination
 - Recertification

Question counts and sources

- Counts
 - Total: ~2000 new questions
 - Per subtopic: min \geq 20, mean \sim 40, max > 100
- Sources
 - Each question directly based on specific source
 - Sources: published, peer-reviewed, publicly available
 - Yes: journal papers, conference papers, books
 - No: briefings, unpublished reports, Wikipedia
 - > 175 different sources
 - Source list available

Question format and metadata

- Format
 - ~75% multiple choice (one correct, three incorrect)
 - ~25% True–False
 - Diagrams, images, mathematical formulas used
- Question metadata
 - Question and answers
 - Unique question number
 - Source citation, including page number
 - Author
 - Subtopic
 - Certification type (User/Mgr, Dev/Tech, Core)
 - Difficulty (1–5)

Question number 8.545 Question Which of the following is *not* a use of simulation? Justify decisions already made based other criteria Correct answer Describe and analyze the behavior of a system Incorrect answer Ask and answer "what if" questions about a system Incorrect answer Help in designing new systems Incorrect answer Type Core Difficulty 2 (Easy) Topic 1.1 Fundamental terms and concepts Source J. Banks, "Principles of Simulation", in J. Banks (Editor), Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice, John Wiley & Sons, New York NY, 1998, pp. 3-30. Page number 3 Question author M. Petty

Question number 6.20 In simulating a physical system governed by partial Question differential equations, _____ can be used to facilitate estimation of derivatives. Fourier analysis Correct answer Incorrect answer The Graham-Schmidt process Incorrect answer The downhill-simplex method Gauss-Jordan elimination Incorrect answer **Developer/Technical** Type 5 (Very difficult) Difficulty Topic 4.2 Physics-based modeling W. Kaplan, Advanced Calculus, Fourth Edition, Source Addison-Wesley, Redwood City CA, 1991 Page number 530 Question author W. Colley

Question number 9.78 Which of the following terms best describes use of Question models and simulation by the military, for the purposes of obtaining insight into the cost and performance of military equipment? Requirements and acquisition Correct answer Exploration of advanced technologies and concepts Incorrect answer Incorrect answer Training Geo-navigation Incorrect answer User/Manager Type Difficulty 3 (Moderate) Topic 3.1 Combat and military R. D. Smith, *Military Simulations & Serious Games*, Source Modelbenders Press, Orlando FL, 2009. Page number 38 Question author S. Barbosa

Question number	8.546
Question	True or False: Only systems that actually exist,
	as opposed to those that have been planned or
	designed but not implemented, can be simulated.
Correct answer	False
Incorrect answer	True
Туре	Core
Difficulty	2 (Easy)
Topic	1.1 Fundamental terms and concepts
Source	J. Banks, "Principles of Simulation", in J. Banks
	(Editor), Handbook of Simulation: Principles,
	Methodology, Advances, Applications, and Practice,
	John Wiley & Sons, New York NY, 1998, pp. 3-30.
Page number	4
Question author	M. Petty

Question number	9.65
Question	Which of the following terms best describes the
	purpose of sensor footprint exaggeration in military
	simulations?
Correct answer	It ensures that detection calculations are carried out
	on all detectable objects between two time steps
Incorrect answer	It is used for marketing brochures
Incorrect answer	It compensates for hindrances to line-of-sight
Incorrect answer	It normalizes sensor footprints
Туре	Developer/Technical
Difficulty	4 (Difficult)
Торіс	3.1 Combat and military
Source	R. D. Smith, <i>Military Simulations & Serious Games</i> ,
	Modelbenders Press, Orlando FL, 2009.
Page number	357
Question author	S. Barbosa

Question number 8.10 Question Which of the following terms is best defined as "the process of determining whether an implemented model is consistent with its specification"? Verification Correct answer Validation Incorrect answer Accreditation Incorrect answer Calibration Incorrect answer Type Core 2 (Easy) Difficulty Topic 5.6 Verification, validation, and accreditation Source M. D. Petty, "Verification, Validation, and Accreditation", in J. A. Sokolowski and C. A. Banks, *Modeling and* Simulation Fundamentals: Theoretical Underpinnings and Practical Domains, John Wiley and Sons, Hoboken NJ, 2010, pp. 325-372. Page number 330 Question author M. Petty

Examination instances

- Examination instance generation
 - Unique instance generated for each candidate
 - Candidate selects certification type
 - Candidate selects excluded subtopics
 - Questions selected randomly within selections
- Examination instance
 - 100 questions
 - From selected certification type (U/M, D/T) or Core
 - At least 10 questions per topic
 - No questions from excluded subtopics
 - Mean difficulty minimum 2.5, maximum 3.5

Part 1: Introduction, structure, and logistics

- Introduction
 - Motivation
 - Certification types
- Structure
 - Topics and subtopics
 - Questions and instances
- Logistics
 - Requirements, preparation, and examination
 - Recertification

Certification requirements

- Education, work experience, and examination
- Letters of recommendation (3)
- Signed ethics statement

Education	Related work experience	CMSP exam
A.S. degree	8 years	Passing grade
B.S. degree	6 years	Passing grade
M.S. degree	5 years	Passing grade
Ph.D. degree	3 years	Passing grade

Preparing for the CMSP exam

- CMSP exam intentionally not "crammable"
 - Questions from a large number of sources
 - Passing requires broad knowledge and experience
- Preparing for the exam
 - Attend CMSP prep course: UCF, AEgis, UAH
 - Secure access to sources for "take home" period
 - Read sources

Key sources

- More than 175 different sources for questions ...
- ... but four "key" sources should be available before attempting the exam

[BanksJ, 1998] J. Banks (Editor), Handbook of Simulation:
 Principles, Methodology, Advances, Applications, and Practice, John Wiley & Sons, New York NY, 1998.

[Greasley, 1998] A. Greasley, *Enabling a Simulation Capability in the Organization*, Springer-Verlag, London UK, 1998.

[Sokolowski, 2010] J. A. Sokolowski and C. M. Banks (Editors), Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains, John Wiley and Sons, Hoboken NJ, 2010.

[Tolk, 2012] A. Tolk (Editor), *Engineering Principles of Combat Modeling and Distributed Simulation*, John Wiley & Sons, Hoboken NJ, 2012.

Examination delivery process

- Candidate applies and pays fee (\$250)
- Administrator creates account for candidate
- Candidate selects certification type, exclusions
- System generates examination instance
- System give candidate web access to instance
- Candidate answers 100 questions over 14 days
- Candidate submits completed examination
- System scores examination
- Administrator notifies candidate of result

Examination web site

Part 1: Introduction, structure, and logistics

- Introduction
 - Motivation
 - Certification types
- Structure
 - Topics and subtopics
 - Questions and instances
- Logistics
 - Requirements, preparation, and examination
 - Recertification

CMSP recertification

- CMSP designees must recertify every 4 years
 - Recertification application and fee
 - Formal resubscription to Simulationist Code of Ethics
 - Minimum 275 recertification units
- Recertification units
 - Employment
 - Publications
 - Professional society participation
 - Education
 - Conference participation
 - Continuing education units

Part 2: Content survey

- Definitions and concepts
 - M&S terms and attributes
 - M&S categories
- Modeling methods
 - Survey of modeling methods
 - Discrete event simulation
 - Monte Carlo simulation
- Special topics
 - Verification, validation, and accreditation
 - Distributed simulation

Model

Concepts of model and simulation

- Model: representation of something else
- Simulation: executing a model over time

$$R = 2.59 \times \sqrt{\frac{1}{10} \sigma \times \left(\frac{\log^{-1}\left(\frac{ERP_t}{10}\right)\log^{-1}\left(\frac{G_r}{10}\right)\log^{-1}\left(\frac{MDS_r}{10}\right)}{\log^{-1}\left(\frac{FEL_r}{10}\right)F_t^2}\right)}$$

Both

Definition: Model

Model. A physical, mathematical, or otherwise logical representation of a system, entity, phenomenon, or process. [DOD, 2011]

To an observer *B*, an object A^* is a model of an object *A* to the extent that *B* can use A^* to answer questions that interest him about *A*. [Minsky, 1965]

- Representation of something else, often a "real-world" system
- Some aspects of the modeled system are represented in the model, others not

Example: Model

Equation describing vertical height of an object moving under gravity.

 $h(t) = -4.9t^2 + vt + s$

- h = height (meters)
- *t* = time in motion (seconds)
- v = initial velocity (meters per second, + is up)
- s = initial height (meters)

Note that at t = 0, h = s, as expected.

Definition: Simulation

Simulation. [Executing] a model over time. [DOD, 2011]

The imitation of the operation of a real-world process or system over time. [BanksJ, 1998]

A technique for testing, analysis, or training in which real world systems are used, or where a model reproduces real world and conceptual systems. [DOD, 1996]

Alternative uses of the term

- A large composite model (avoid)
- Software implementation of a model (avoid)
- Application of a model to solve a problem [Velten, 2009]
- An experiment performed on a model [Fritzson, 2004]
- Several others [Ören, 2009] [BanksC, 2010]

Example: Simulation

Model: $h(t) = -4.9t^2 + vt + s$ Data: v = 30, s = 300

Simulation vs reality

Definitions: Simuland and referent

Simuland. The subject of a model or simulation.

- A real-world (or notional) system of interest
- Object, phenomenon, or process to be simulated

Referent. The body of knowledge available to a modeler regarding a simuland.

- Quantitative and formal,
 e.g. physics equations for aircraft flight dynamics
- Qualitative and informal,
 - e.g., pilot's expectation of buffet before stall

Definition: Intended use

Intended use. The purpose for or function of a model; what the model will be used for; the problem to be addressed by the model. [DOD, 2012]

Characteristics [Piersall, 2014]

- "Not a capability, solution, or implementation"
- Expressed from the perspective of the user
- Should be formally specified

"Any attempt to suppress the role of the intentions of the investigator, B, leads to circular definitions or to ambiguities about essential features ..." [Minsky, 1965]

"Modeling and simulation is always goal-driven, ..., we should know the purpose of our potential model before we sit down to create it." [Cellier, 1991]

Definitions: Conceptual and executable models

Conceptual model [BanksC, 2010]

- Simuland components, structure
- Aspects of simuland to model
- Implementation specifications
- Use cases
- Assumptions
- Initial model parameter values

```
/* Height of an object moving in gravity. */
/* Initial velocity v and height s constants. */
main()
{
  float h, v = 30.0, s = 300.0;
  int t;
  for (t = 0, h = s; h >= 0.0; t++)
  {
    h = (-4.9 * t * t) + (v * t) + s;
    printf("Height at time %d = %f\n", t, h);
  }
}
```

Executable model

- Computer software
- Implemented conceptual model [DOD, 2011]
- AKA computational model [Waltz, 2010] [DOD, 2011]

Definition: Abstraction

Abstraction. Intentional omission of aspects of the simuland considered negligible or irrelevant.

Abstraction may be motivated by ...

- Cost; reduce implementation and testing resources by omitting simuland aspects not need for application
- Execution speed; don't compute details or effects that are negligible
- Understanding; omit aspects of simuland not understood well enough to model accurately

"Modeling and simulation aims at simplification,

rather than at a useless production of complex copies of a complex reality. ... The best model is the simplest one that still serves its purpose." [Velten, 2009]

Examples: Abstraction

Models

Physical model Represents: Appearance Abstracts: Size

Physical model Represents: Aerodynamics Omits: Ailerons

Physical model Represents: Flight Omits: Appearance

1951]

Bollay,

Simuland P-51D Mustang

Models

Visual model Represents: Appearance Omits: Flight

Functional model Represents: Aerodynamics Omits: Appearance

Aggregate model Represents: Combat Abstracts: Pilot skill

Definition: Validity

Validity. Accuracy of model's representation or simulation's results. AKA fidelity.

"The degree to which a model or simulation reproduces the state and behavior of a real world object or the perception of a real world object, feature, condition, or chosen standard in a measurable or perceivable manner..." [Gross, 1999]

Validity is relative to ...

- Simuland: How closely do the simulation results match the simuland's behavior?
- Intended use: How much validity is needed for the model's intended use?

Definition: Resolution

Resolution. The degree of detail with which the real-world is simulated. More detail is higher resolution. AKA granularity.

Examples (low to high resolution)

- Simulate fighter squadron as a whole
 - Squadron capabilities, strength represented abstractly
- Simulate individual aircraft
 - Separate model(s) for each individual aircraft
 - Aircraft capabilities represented abstractly
- Simulate sensor and weapons systems
 - Separate model(s) for each system on each aircraft

Definition: Scale

Scale. Size of the overall scenario or event the simulation represents. AKA level.

Typical scales for military simulations

- Engineering, Component
 - System or subsystem of a single entity
- Engagement, Platform
 - 1-v-1 to many-v-many
- Mission, Battle
 - 10s to 1000s of entities
- Theater, Campaign
 - 10000s of entities

Part 2: Content survey

- Definitions and concepts
 - M&S terms and attributes
 - M&S categories
- Modeling methods
 - Survey of modeling methods
 - Discrete event simulation
 - Monte Carlo simulation
- Special topics
 - Verification, validation, and accreditation
 - Distributed simulation

Different M&S categories

- Application type
 - Training, Analysis, Experimentation, Engineering, Acquisition, Entertainment
- Randomness
 - Deterministic, Stochastic
- Time
 - Discrete, Continuous
- Environment
 - Live, Virtual, Constructive
- Modeling method
 - Many; surveyed later

Definition: Training

Training. M&S used to produce learning in a user or participant.

- Realistic enough to produce useful skills or knowledge
- Safer, more forgiving of mistakes
- Encounter unusual and/or dangerous situations

P-8 Poseidon flight simulator [Spenser, 2010]

Definition: Analysis

Analysis. M&S used to predict, test, or evaluate a real or notional system or idea.

- Used to answer questions
- Repeatability often desirable
 - Avoid confounding variability
- Careful experimental design
 - Trials planned in advance to cover cases
 - Multiple trials for statistical significance

JCATS, Wurtsmith AFB

Definition: Experimentation

Experimentation. M&S used to explore design or solution spaces, or to gain insight into an incompletely understood situation. [Ceranowicz, 1999]

[An] iterative process of collecting, developing and exploring concepts to identify and recommend the best value-added solutions for changes in the doctrine, organization, training, material, leadership and people required to achieve significant advances in future joint operational capabilities. [Helfinstine, 2001]

- Simulation used to "explore" possibilities
- Less "controlled" than analysis
 - Later trials may be determined by earlier
 - Statistical significance may not be important

Definition: Engineering

Engineering. M&S used to develop, analyze, or test an engineering design.

- Model artificial systems and components
- Models physics-based, no "behavior"
- No virtual environment or simulators
- User not expected to benefit from experience of execution
- Primary goal: informative result

Definition: Acquisition

Acquisition. M&S used to specify, design, develop, and acquire new systems.

- Simulation used to acquire systems
 - Effectiveness and selection: "Build the right thing"
 - Engineering and production: "Build the thing right"
- Goal: save lives, money, time

Definition: Entertainment

Entertainment. M&S used to entertain or amuse a user or participant.

- Engaging gameplay and/or goals
- Place user in situation, place, or activity he/she may not have access to in reality
- Realism secondary to user enjoyment

Combat Flight Simulator 3

World of Warcraft

Definition: Continuous

Continuous model. Model where state variables can change (pseudo-)continuously over time. Typically time advances in small fixed time steps. AKA "time-stepped". [BanksJ, 2010]

Continuous simulation. Simulation using continuous models.


```
t = start_time
while t < end_time
t = t + \Delta t
calculate simulation state at t
endwhile
```

Definition: Discrete

Discrete model. Model where model state variables change only at a discrete set of points in time ("events"). AKA "event-driven". [BanksJ, 2010]

Discrete event simulation. Simulation using discrete models and event handling.

Definition: Live

Live. Simulation involving real people operating real systems. [DOD, 2011]

- Real systems
- Systems operated by participants
- Participant experience close to reality
- Instrumentation substitutes for simuland aspects
 - e.g., weapon firings or impacts
 - e.g., spacecraft launch
- Primary goal: useful experience
- Typical application: training

Example: Hazmat exercise

- Live training for local emergency responders
- Practice hazardous material response, cleanup
- Simulation
 - Harmless or noxious hazmat surrogate
 - Roleplayers act as victims
 - Real equipment used

Definition: Virtual

Virtual. Simulation involving real people operating simulated systems. [DOD, 2011]

- Simulators and virtual environment
- Simulators operated by participants
- Participant experience usefully realistic
- Important simuland aspects modeled
- Participants exercise motor control skills, decision skills, or communication skills [DOD, 2011]
- Primary goal: useful experience
- Typical application: training

Example: Close Combat Tactical Trainer

- Virtual simulators
 - Trainees in vehicle simulators
 - Computer generated battlefield

exterior

- Combat training
 - Trains team tactics
 - Platoon to battalion units

/irtual battlefield

Definition: Constructive

Constructive. Simulation involving simulated people operating simulated systems. Real people make inputs to such simulations, but are not involved in determining the outcomes. [DOD, 2011]

- No real systems, virtual environment, or simulators
- Important simuland aspects modeled
- Operator and model control simuland behavior
- Operator not expected to benefit from use
- Primary goal: useful result
- Typical applications: analysis, experimentation

Example: Joint Theater Level Simulation

[Kang, 1998] [JFCOM, 2007]

- "Wargame" style constructive simulation
- JTLS models
 - Hexagonal terrain
 - Military units (air, ground, naval)
 - Movement, sensing, logistics: abstract mathematical models
 - Combat: Lanchester equations
- Applications
 - Training (exercise driver)
 - Analysis

Part 2: Content survey

- Definitions and concepts
 - M&S terms and attributes
 - M&S categories
- Modeling methods
 - Survey of modeling methods
 - Discrete event simulation
 - Monte Carlo simulation
- Special topics
 - Verification, validation, and accreditation
 - Distributed simulation

Definition: Physical model

Physical model. A physical object which models physical aspects of the simuland. [Haefner, 2005]

AKA surrogate.

Physical models are

- Typically used in live simulation
- Usually not a perfect replica, but "close enough"
- Often motivated by
 - Safety; use of simuland dangerous
 - Cost; use of simuland costly
 - Non-availability; simuland not available for use

Example: Harvard glass flowers

- Glass models of plants
- Made 1887–1936 by Leopold and Rudolf Blaschka
- 3000 models, 847 species
- Used in botany instruction
- Always available, regardless of season

Definition: Conceptual model

Conceptual model. Representation, in any of a variety of narrative or graphical means, of the elements, relationships, and causal relationships of a simuland and its context. Adapted from [Waltz, 2010]

- Possible forms: Text, photographs, sketches, equations, concept maps, tables, algorithms, data, UML diagrams
- Uses
 - Communicate among SMEs, modelers, users, managers, and customers
 - Define what will be represented and omitted in implemented executable model [Petty, 2010]
 - Document model assumptions
 - Support comparison of implemented model capabilities to stated requirements [Petty, 2010]

Example: Concept map

- Semi-active radar homing air-to-air missile
- Boxes = objects, arrows = interactions
- Additional components, interactions may be added

Definition: Declarative models

• Description [Fishwick, 1995]

- Model represents qualitatively distinct simuland states
- Simulation traces sequence of states over time
- State transitions conditional (inputs or events), or stochastic (probability distributions)
- Processes, phenomena often modeled stochastically

Forms

- Finite state automata
- Markov chains
- Queueing models, e.g., discrete event simulation
- Formal models

Example: Finite state machine

Description

- Structured as directed graph; vertices are states, edges are transitions
- Uniform or continuing activities are states
- Changes from one activity or another are transitions
- Transitions triggered by conditions (input, event, time)
- Concept adapted from theoretical computer science
- AKA finite state automata (FSA)
- Modes of use
 - FSM is complete model
 - FSM is organizing framework for other models

Example: Dismounted infantry ATGM FSM

[Petty, 2009a]

- Example of FSM used to organize other models
- Each state's action implemented as source code

Definition: Formal models

Description

- Modeling notation or language defined mathematically
- Precise, unambiguous syntax and semantics
- Allows proofs of desirable model properties, e.g., syntactic interoperability, state reachability
- Potentially amenable to automated analyses
- Theoretically equivalent to programming language
- Modes of use
 - Use formal model as design specification for subsequent implementation as software
 - Execute formal model directly using interpreter

Example: Discrete Event System Specification [Zeigler, 2000]

- DEVS: Well known formal modeling notation
- Research literature of example applications

The atomic DEVS model for player A of Fig. 1 is given Player= $\langle X, Y, S, s_0, ta, \delta_{ext}, \delta_{int}, \lambda \rangle$ such that

$$\begin{split} X &= \{?receive\} \\ Y &= \{!send\} \\ S &= \{(d,\sigma) | d \in \{Wait, Send\}, \sigma \in \mathbb{T}^{\infty}\} \text{ and } s_0 = (Send, 0.1) \\ ta(s) &= \sigma \text{ for all } s \in S \\ \delta_{ext}(((Wait,\sigma), t_e), ?receive) &= (Send, 0.1) \\ \delta_{ext}(((Send,\sigma), t_e), ?receive) &= (Send, \sigma - t_e) \\ \delta_{int}(Send, \sigma) &= (Wait, \infty), \delta_{int}(Wait, \sigma) &= (Send, 0.1) \\ \lambda(Send, \sigma) &= !send, \lambda(Wait, \sigma) &= \phi \\ \text{Both Player A and Player B are deterministic DEVS models.} \end{split}$$

DEVS model of ping-pong rally Wikipedia, 2011]

Definition: Functional models

Description

- Model represents dynamic physical processes and phenomena of simuland and context
- Often consists of directionally-connected equations
- Equations based on physics, hence functional models AKA physics-based
- Often differential equations, or discretized versions
- May be directly solvable (AKA "analytic") or may require numerical approximation (AKA "numeric")
- Methods for latter exist, e.g., Runge-Kutta [Colley, 2010]
- Forms
 - Direct implementation as source code
 - Block diagrams in modeling environment

Example: Deceleration

Auto deceleration at toll booth

- Is there sufficient stopping distance in toll booth ramp?
- Model with physics equations, modeling environment

[McKenzie, 2010]

F = maNewton's second lawa = dv/dtAcceleration $F_f = ma_f$ f denotes frictionv = dx/dtVelocity $F_f = m\mu g$ $a_f = m\mu g$ [McKenzie, 2010]v = dx/dtVelocity $ma_f = \mu mg$ AlgebraAlgebra $a_f = \mu g$ AlgebraAlgebra

Example: Deceleration implementation

Adapted from [McKenzie, 2010]

Definition: Constraint models

- Description
 - Similar to functional models
 - No explicit directionality of connections, rather balancing of quantities or relationships
 - Often physics-based equations or components
- Forms
 - Direct implementation as source code
 - Block diagrams in modeling environment

Example: Stopping distance

• How much distance is required to stop for given speed?

Velocity	Velocity	Stopping
mph	m/s	distance
20	8.9408	5.438
30	13.4112	12.235
40	17.8816	21.752
50	22.3520	33.987
55	24.5872	41.125
60	26.8224	48.942
70	31.2928	66.615

Stopping distance, given speed

	Velocity	Velocity	Stopping	
	mph	m/s	distance	
	27.121	12.124	10	
	38.355	17.146	20	
	46.976	21.000	30	
_	54.243	24.249	40	
S	60.645	27.111	50	
c	66.434	29.698	60	
3	71.757	32.078	70	

Speed, given stopping distance

Definition: Spatial models

Description

- Simuland, or space occupied by simuland, partitioned into a large number of spatial elements
- Model state of simuland at each element, or model entities located within the elements
- Entities/elements treated in "regularized manner", i.e., update rules for each element often identical
- State or activity of each entity/element often depends on neighboring entities/elements
- Forms
 - Direct implementation as source code
 - Dedicated spatial modeling tools

Example: Finite element modeling

- Simuland represented by "mesh" of nodes (elements) and connecting edges (neighboring elements)
- Nodes' states modeled with physics equations
- State computations iterated over successive time steps
- Each time step, each node's state calculated based on
 - Length of time step
 - Neighbors' states

Example: Agent based models

- Individual entities ("agents") focus of model
- Agents may occupy, move between elements
- Agents interact with each other and environment according to behavior rules and parameters
- Complex behavior emerges from interaction
- Widely varying in details, sophistication

Definition: Visual models

Visual model. A model of the appearance of an object, perhaps in different variations.

Visual models

- Often based on polygons (shape) and textures (colors applied to polygons)
- May or may not be specific to a particular image generator
- Realism of image not related to validity of underlying physics or behavior

Example: Aircraft visual models

Personal computer flight simulation game Microsoft® CFS 3, 1920x1200 pixels

P-38J Note polygonalization in model

P-38L Same polygons, different textures

Definition: Data-based models

Data-based model. A model based on data (rather than equations, blocks, or logic) that describe the represented aspects of the simuland.

AKA empirical [Waltz, 2010], phenomenological [Velten, 2009], data-driven [Velten, 2009], statistical [Velten, 2009]

- Model not directly based on physics equations
- Data collected (or generated) in advance
- Examples: probability distribution models, linear regression models

Example: Atmospheric CO₂

Model based on observational data

Definition: Aggregate models

Aggregate model. A model that represents a large number of small objects and actions in a combined, or aggregate, way.

Aggregate models

- Often used in constructive simulation
- Generally not directly physics-based
 - Abstraction of many physics-based interactions

Example: Lanchester equations

Differential equations for attacker and defender force attrition with respect to time; widely used for military operations research. [Lanchester, 1956] [Davis, 1995]

$$\frac{dA}{dt} = -K_d A^r D^s \qquad \frac{dD}{dt} = -K_a D^t A^u$$

A D K_a, K_d r, s, t, u

Attacker strength (abstract, aggregate value) Defender strength (abstract, aggregate value) Lethality (K_a attacker, K_d defender) u Free parameters, time independent

Part 2: Content survey

- Definitions and concepts
 - M&S terms and attributes
 - M&S categories
- Modeling methods
 - Survey of modeling methods
 - Discrete event simulation
 - Monte Carlo simulation
- Special topics
 - Verification, validation, and accreditation
 - Distributed simulation

DES: Customers, queues, servers, and events

Example: Simple queueing system simulation Event-driven, discrete, probability-based

Scope of DES

- Simulands representable as a queuing system
- Queueing system
 - Characterized by customers, queues, and servers
 - State changes discretely at events
 - Customer attributes may affect events or service times

Simuland	Customers	Attributes	Servers	Events
Bank lobby	Customers	Account balance	Teller ATM	Arrival Departure
Subway	Riders	Origin Destination	Subway car	Arrival at station Arrival at destination
Assembly line	Assemblies	Speed Breakdown rate	Welding robot Installation worker	Breakdown
Comm network	Messages	Length Destination	Router Switch	Arrival at destination
Field hospital	Wounded	Wound type Blood pressure	Surgeon Operating room	Arrival at hospital Begin treatment

Basic logic of DES

- Model status
 - Current simulation time $CLOCK = t_0$
 - Future Event List (FEL), with next event (e_1, t_1)
- Event-driven time advance algorithm
 - Remove next event (e_1, t_1) from FEL
 - Advance (set) CLOCK to t_1
 - Process event e₁ per rules for event type: update system state and possibly schedule future events by inserting events into FEL
 - Repeat

Time advances from event time t_i to next event time t_j without simulating time in between the events.

Events in a single queue, single server system

Event logic: Arrival

Event logic: Departure

Modeling multistep processes

Randomness and random variates

- Randomness in discrete event simulation
 - Randomness used extensively in DES
 - DES randomness imitates uncertainty in real life
 - Represents system aspects not otherwise modeled, individually unpredictable but follow a pattern
 - e.g., system events (interarrival times)
 - e.g., system activities (service times)
- Random variates
 - Random values for quantities of interest
 - Generated per probability distributions that model phenomenon or process

Cumulative distribution function (cdf)

Exponential distribution

Probability density function (pdf)

- Larger values increasingly less probable
- Parameter λ is rate (events per time unit), $1/\lambda$ is mean interevent time

Normal distribution

Probability density function

Cumulative distribution function

pdf
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right] \qquad \text{cdf } F(x) = \int_{-\infty}^x \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^2\right] dt$$

- Values clustered symmetrically around mean
- Parameters mean μ is center, variance σ^2 is measure of dispersion
Commonly used probability distributions

Type of simuland	Phenomenon or process	Distribution	
Conorol qualing avatama	Interarrival times	Exponential	
General queueing systems	Service times	Normal	
	Demand	Poisson	
Inventory and supply chain	Time between demands	Poisson	
	Lead time	Gamma	
Reliability and maintainability	Time to failure	Weibull	
Limited data	Varies	Triangular	
Varies	No suitable theoretical	Empirical	

Part 2: Content survey

- Definitions and concepts
 - M&S terms and attributes
 - M&S categories
- Modeling methods
 - Survey of modeling methods
 - Discrete event simulation
 - Monte Carlo simulation
- Special topics
 - Verification, validation, and accreditation
 - Distributed simulation

Two definitions of Monte Carlo Simulation

Monte Carlo 1 procedure

Defining a Monte Carlo model

- 1 Identify a set of random variables that specify the initial condition.
- 2 Select probability distribution and parameters for each.
- 3 Develop deterministic model to calculate results from a set of inputs.

Executing a Monte Carlo simulation

- 1 Repeat for each of *n* trials:
 - 1.1 Randomly generate random variate for each input.
 - 1.2 Calculate trial outcome with deterministic model.
 - 1.3 Record trial outcome.
- 2 Statistically analyze the results.

Monte Carlo 2 procedure

Defining a Monte Carlo model

- 1 Identify a set of input variables that specify the initial condition.
- 2 Select specific values for each.
- 3 Develop stochastic model based on probability distributions to calculate results from a set of inputs.

Executing a Monte Carlo simulation

- 1 Repeat for each of *n* trials:
 - 1.1 Initialize model with selected input values.
 - 1.2 Calculate trial outcome with stochastic model.
 - 1.3 Record trial outcome.
- 2 Statistically analyze the results.

Example (MC1): Missile impacts [Zhang, 2008]

Application

- Deterministic 6DOF model of missile trajectory
- Used to calculate impact point given initial conditions
- Measure x and y error w.r.t. aiming point
- Compare model and live test x and y error variances
- Two ranges: 60 Km and 100 Km
- 6 live tests, 800 Monte Carlo model trials each range
- Monte Carlo analysis
 - For each trial, generate initial conditions from probability distributions
 - Calculate impact point using model
 - Repeat for 800 trials
 - Compare variances

Missile trajectory initial conditions [Zhang, 2008]

- Source does not identify initial conditions
- Conjectured initial condition variables
 - Launch elevation
 - Launch azimuth
 - Engine thrust while burning
 - Engine burn time
- Setting initial condition variables
 - Appropriate probability distribution selected for each
 - Random variate for each variable for each trial

Missile trajectory model

- Physics based
- Organized into modules: velocity, rotation, atmospheric conditions, aerodynamics, thrust
- Implemented in MATLAB Simulink

$$m\frac{dV}{dt} = P\cos\alpha\cos\beta - X - mg\sin\theta$$
$$mV\frac{d\theta}{dt} = p(\sin\alpha\cos\gamma_v + \cos\alpha\sin\beta\sin\gamma_v) + Y\cos\gamma_v - Z\sin\gamma_v - mg\cos\theta$$
$$-mV\cos\theta\frac{d\varphi_v}{dt} = P(\sin\alpha\sin\gamma_v - \cos\alpha\sin\beta\sin\gamma_v) + Y\sin\gamma_v + Z\cos\gamma_v$$

Velocity module equations

Velocity module block diagram

Impact data

Trial	x error s	y error s	n
Model	526.62	85.91	800
Simuland	566.66	89.77	6

Trial	x error s	y error s	n
Model	921.39	111.25	800
Simuland	980.52	120.68	6

Example (MC2): Attrition combat [Strickland, 2011]

- Application
 - Force-on-force attrition
 - Direct fire only
 - No maneuver
- Modeling

- Markov chain Lanchester attrition model
- Fixed initial conditions, stochastic model \rightarrow MC2
- Notation
 - Blue strength *B*, Red strength *R*
 - Blue lethality (vs Red) K_B , Red lethality (vs Blue) K_R
 - Blue force attrition rate $A_B(B, R) = K_R \cdot \min(B, R)$
 - Red force attrition rate $A_R(B, R) = K_B \cdot \min(B, R)$

Model details

- Model assumptions
 - No more than one shooter may engage a target at a time
 - Time between Blue casualties exponentially distributed with rate $\lambda_B = A_B(B, R) = K_R \cdot \min(B, R)$
 - Time between Red casualties exponentially distributed with rate $\lambda_A = A_R(B, R) = K_B \cdot \min(B, R)$
 - Battle ends when either side reaches break strength
- Simulation
 - Stochastically generate times of first Blue, Red casualties
 - Identify earlier casualty time and decrement side's strength
 - Compare decremented side's strength to break strength
 - Generate time of next casualty for decremented side
 - Repeat

Results, single trial

	Initial	Break	Lathality				
	strength	strength	Lethanty				
Blue	20	10	0.010				
Red	30	15	0.006				
Stop	Time	Blue	Red	Next Blue	Next Red	Pocult	
step	Time	strength	strength	casualty	casualty	Nesun	
0	0	20	30	1.34	3.99	Continue	
1	1.34	19	30	8.50	3.99	Continue	
2	3.99	19	29	8.50	8.64	Continue	
3	8.50	18	29	17.29	8.64	Continue	
4	8.64	18	28	17.29	16.62	Continue	
5	16.62	18	27	17.29	20.25	Continue	
6	17.29	17	27	17.84	20.25	Continue	
7	17.84	16	27	26.48	20.25	Continue	
8	20.25	16	26	26.48	28.60	Continue	
9	26.48	15	26	53.28	28.60	Continue	
10	28.60	15	25	53.28	38.51	Continue	
11	38.51	15	24	53.28	41.59	Continue	
12	41.59	15	23	53.28	54.85	Continue	
13	53.28	14	23	60.21	54.85	Continue	
14	54.85	14	22	60.21	63.33	Continue	
15	60.21	13	22	68.88	63.33	Continue	
16	63.33	13	21	68.88	70.33	Continue	
17	68.88	12	21	84.04	70.33	Continue	
18	70.33	12	20	84.04	91.41	Continue	
19	84.04	11	20	88.73	91.41	Continue	
20	88.73	10	20	98.63	91.41	Red	

Results, multiple trials

	Trials	100	100	100
ns	Blue initial strength	20	20	20
ditio	Red initial strength	30	30	30
cone	Blue break strength	10	10	10
tial	Red break strength	15	15	15
	Blue lethality	0.008	0.010	0.012
	Red lethality	0.006	0.006	0.006
	Blue wins	34	52	76
ults	Red wins	66	48	24
Res	Blue mean losses	8.88	8.08	7.14
	Red mean losses	11.01	12.85	14.06

Part 2: Content survey

- Definitions and concepts
 - M&S terms and attributes
 - M&S categories
- Modeling methods
 - Survey of modeling methods
 - Discrete event simulation
 - Monte Carlo simulation
- Special topics
 - Verification, validation, and accreditation
 - Distributed simulation

Definition

Verification. The process of determining that a model implementation and its associated data accurately represents the developer's conceptual description and specifications. [DOD, 2009]

- Transformational accuracy [Balci, 2002]
 - Transform specifications to code
- Software engineering quality
 - Software engineering methods apply

Definition

Validation. Determining the degree to which a model or simulation and its associated data are an accurate representation of the real world from the perspective of the intended uses of the model.

Comparing model results with experimental data. [Velten, 2009]

- Representational accuracy [Balci, 2002]
 - Recreate simuland with results
- Modeling quality
 - Special validation methods needed

Definition

Accreditation. Official certification [by a responsible authority] that a model or simulation is acceptable for use for a specific purpose. [DOD, 2009]

- Official usability for specific purpose or function
 - Management decision, not technical process
 - Not a blanket or general-purpose approval
- Accrediting (or accreditation) authority
 - Agency or person responsible for use of model
 - Normally not model developer

VV&A comparisons

VV&A errors and risks [Balci, 1981] [Balci, 1985] [Balci, 1998]

	Model valid	Model not valid	Model not relevant
Model used	Correct	Type II error Use of invalid model; Incorrect V&V Model user's risk; More serious error	Type III error Use of irrelevant model; Accreditation mistake; Accreditor's risk; More serious error
Model not used	Type I error Non-use of valid model; Insufficient V&V Model builder's risk; Less serious error	Correct	Correct

VV&A error examples

Model

Reality

Error

Type I

Japanese wargames and the Battle of Midway [Fuchida, 1955] [Barker, 1971]

$\Pr[T_A < 1, T_B < 1] = \\ \phi_2(\phi^{-1}(F_A(1)), \phi^{-1}(F_B(1)), \gamma)$

Type II

Gaussian copula and the 2008 Financial Crisis [Salmon, 2009]

Type III SIMNET, *Primetime Live*, and the 1991 Gulf War

V&V methods

- Many V&V methods available, ~85 in 1998 [Balci, 1998], more developed since [Balci, 2002] [Petty, 2010]
- Different purposes, advantages, suitable models

Informal	Static	Dynamic	Formal
-Audit -Desk checking -Documentation Checking -Face validation -Inspections -Reviews -Turing test -Walkthroughs	-Cause-Effect Graphing -Control Analysis -Data Analysis -Fault/Failure Analysis -Interface Analysis -Semantic Analysis -Structural Analysis -Symbolic Evaluation -Syntax Analysis	 Acceptance Testing Alpha Testing Assertion Checking Beta Testing Bottom-up Testing Comparison Testing Statistical Techniques Structural Testing Submodel/Module Testing 	 -Induction -Inductive Assertions -Inference -Logical Deduction -Lambda Calculus -Predicate Calculus -Predicate Transformation -Proof of Correctness

[Balci, 1998]

Informal V&V methods

Characteristics

- Methods that rely heavily on Subject Matter Expert (SME) expertise and evaluation
- More often qualitative and subjective
- More often performed by SMEs
- Effectiveness depends on SME qualifications [Balci, 2002]
- Useful when modeling notional system [Balci, 2002]
- Example informal V&V methods
 - Inspection
 - Face validation
 - Turing test

Face validation (validation)

- SMEs, modelers, and users observe model execution and/or examine results
- Compare results to simuland behavior, as understood by SMEs
- Assessment
 - Model validity evaluated subjectively
 - Based on expertise, estimates, and intuition
- Comments
 - Frequently used because of simplicity
 - Often used when user interaction important
 - Clearly better than no validation

Face validation example: JOFT

- Joint Operations Feasibility Tool [Belfore, 2004]
 - Assess deployment transportation feasibility
 - Assess logistical sustainment feasibility
- Validation process
 - Special scenarios exercise full range of capabilities
 - 20 SMEs with extensive experience evaluated model
 - Assessments elicited via written questionnaires
- Process structure addressed face validation limits

							Just		me						
TRAC	Base Dura Da	DD eline etion	Days Remainin	g Bequ	Day	Bal. Day Percent	Ris Facto	k *(1-	Repl Bate	enish (1-5)	Time Phases Analysi		nst-Sust. Trans. malysis	Post-Sus Motion Analysis	ŀ
	15		20 Cal	k 1		280	2	Cale	4	Cal	Visor		Vince	View	
Constant Second	I NEP		ALC: NO	S			-		-						-
me	class	Wgt. Factor	Drig. Base. Otv.	Avail. Qty.	EALC	ons. Rate of Users)	[0]c (per	DAY	Rote	1	Bal. Req. past Orig.	Bal. Qty.	Sustain Req.	Sus. Wg Factor	1
classes			19180	19108	_	23		83		1280	19509		19320	8.00	
Data	2		32232	33333	-	7	-	10		42	930		030	0.00	-
	1		22761	87701	-	15		100		2222	40005	-	122210	0.00	
dint is a second se	3		137.47	137.47	-	46		8.4		1384	33768		33780	8.89	
th Laps			31771	31771		29		42		6883	162.05		16.245	0.00	
FORENE	1		25285	12102	-					409	10-10		28-92	0.00	
ALC: NO.			15110	15120	-	19		-		5438	-999.78		49970	0.00	-
THE CONTRACT OF THE OWNER OWNER OF THE OWNER	10		12281	12201	-	28		-		1170	17554		17550	0.00	
Analysis	LUBE	LI Afle	at (a)												
inment	Class	Wgt. Factor	Orig. Base.	Avail. Qty.	[A] [.	ons. Rate of Users)	[0]c	ons. Day User	Rate	**	Bal. Reg. past Orig.	Bal. Qty.	Sustain Beq.	Sus. Wo Factor	
g Out	1		21.490	11498		1		#5		.76	11-10		11-00	0.10	
	2		26.26.0	26768		-45		38		228	10508		10886	0.39	
	1		49237	49232		3		- 10		38	870		870	0.02	
	-	-	22122	22122	-		-	- 21	-	1101	10515	-	10010	0.74	-
	-			10100			-	-		1000	10.000		20.400	2.11	

Static V&V methods

Characteristics

- Methods based on artifact characteristics that can be determined without running a simulation
- Often involve analysis of executable model code
- May be supported by automated tools or manual notations or diagrams
- More often performed by technical experts
- Example static V&V methods
 - Data analysis
 - Cause-effect graphing

Cause-effect graphing (validation)

- Compare causes and effects in simuland to those in conceptual model
 - Cause: event or condition
 - Effect: state change triggered by cause
- Compare simuland to conceptual model
- Identify missing, extraneous, and inconsistent cause-effect relationships

Dynamic V&V methods

Characteristics

- Methods that involve running the executable model and assessing the results
- May compare results with simuland or other models
- More often quantitative and objective
- More often performed by technical experts
- Example dynamic V&V methods
 - Execution tracing
 - Sensitivity analysis
 - Predictive validation
 - Comparison testing
 - Statistical methods

Comparison testing (verification or validation)

- Run simulations of simuland (and scenario) using two different models, compare results
- Compare results to results
- Differences between results signal problems
- Comments
 - If differences, which model has problems?
 - If one model assumed valid, validation method
 - If neither model assumed valid, verification method

Comparison testing example: Radio propagation model [Filiposka, 2011]

- Durkin's radio propagation model
 - Estimates radio coverage area of a transmitter
 - Models attenuation caused by diffraction
 - Considers shadowing caused by terrain
 - Predicts transmission loss using path geometry
- Validated using comparison testing
 - Durkin's model compared to freely available Longley-Rice Irregular Terrain Model
 - Estimated radio coverage areas compared

Durkin's

Coverage comparison Green = Both Yellow = Longley-Rice only Red = Durkin's only

[Filiposka, 2011]

Longley-Rice

Statistical methods (validation)

- Compare model results to simuland observations using statistical methods
 - Various statistical methods: regression analysis, analysis of variance, confidence intervals, hypothesis tests, others [Balci, 1998] [Petty, 2010]
 - May be used in combination with other methods
- Compare results to simuland
- Comments
 - Each statistical method defines statistic or metric of "closeness" or similarity; measure of validity
 - Generally underutilized
 - Selecting method requires knowledge of assumptions

Example applications of statistical methods

Model(s)	Statistical method	Reason for selection
Spacecraft propulsion system sizing	Linear regression	Paired data, simuland-model
Medical clinic waiting Seaport loading/unloading Historical tank battle	Confidence intervals	Single simuland observation, multiple model runs
Bombing accuracy	Confidence intervals with error tolerance	Single simuland observation, multiple model runs, error tolerance available
Waiting line	Hypothesis test	Multiple simuland observations,
Ground combat	for equivalence of means	multiple model runs
Commander decision making	Hypothesis test for equivalence of means	Multiple simuland observations, multiple model runs, equality not assumed
Missile impact accuracy	Hypothesis test for equivalence of variances	Multiple simuland observations, multiple model runs
	Hypothesis test for equivalence of variances	Multiple simuland observations, multiple model runs
wastewater treatment facility	Confidence interval for difference of two means	Multiple simuland observations, multiple model runs, variances not equal
Sources collection site	Hypothesis test for equivalence of variances	Multiple simuland observations, multiple model runs
Sewage collection site	Hypothesis test for equivalence of means	Multiple simuland observations, multiple model runs, variances equal

Formal V&V methods

- Characteristics
 - Methods based on formal mathematical proofs of program correctness
 - Quantitative (or logical) and objective
 - Performed by technical experts
 - Difficult to apply in practice [Balci, 1998]
- Example formal V&V methods
 - Inductive assertions
 - Predicate calculus

Predicate calculus (validation)

- Logically analyze conceptual model
 - Predicate calculus is a formal logic system
 - Create, manipulate, and prove statements
 - Simuland, conceptual model described in pred calc
 - Prove properties of both to show logical consistence
- Compare conceptual model to simuland
- Quite difficult to apply to non-trivial problems

$$(\forall x)[D(x) \to (\forall y)(R(y) \to C(x, y))]$$

$$(\exists x)[D(x) \land (\forall y)(R(y) \to C(x, y))]$$

$$(\forall y)[R(y) \to (\forall x)(C(x, y) \to D(x))]$$

$$(\forall x)(\forall y)[R(y) \land C(x, y) \to D(x)]$$

Last two: "Only dogs chase rabbits." [Gersting, 2003]

Part 2: Content survey

- Definitions and concepts
 - M&S terms and attributes
 - M&S categories
- Modeling methods
 - Survey of modeling methods
 - Discrete event simulation
 - Monte Carlo simulation
- Special topics
 - Verification, validation, and accreditation
 - Distributed simulation

Example distributed simulation: America's Army

- Recruiting and familiarization tool for U.S. Army
- Multiplayer online game, linked via Internet
- First person shooter
- 13M registered users (2014)

Definition

Distributed simulation. Multiple collaborating simulations distributed across locations, computers, and/or processes.

Distributed simulations typically

- Cooperatively simulate simuland
- Each simulates some portion of simuland
- Exchange data about simuland via network messages

Definitions

- Interoperability; the ability of models to meaningfully communicate in a distributed simulation
- Composability; the ability to combine and recombine models and model components into different complex simulations

Distributed simulation system components

- Models/Simulations (simulation nodes)
- Utilities (non-simulation support nodes)
- Network and protocol

Definition

Distributed simulation protocol. Network protocol designed to support a category of distributed simulation systems.

- General protocol characteristics
- Definitions of
 - Data items
 - Message formats
 - Interaction sequences
- Standardized to support interoperability

Distributed simulation interoperability protocols

- Simulator Networking SIMNET
 - First functional distributed simulation protocol
 - Homogenous, entity-level, mostly virtual
- Distributed Interactive Simulation DIS
 - Expanded capabilities w.r.t. SIMNET
 - Heterogeneous, entity-level, mostly virtual
- Aggregate Level Simulation Protocol ALSP
 - Heterogeneous logical time constructive
- High Level Architecture HLA
 - General purpose, subsumes previous protocols
- Test and Training Enabling Architecture TENA
 - Designed with test range applications in mind

Distributed simulation protocol development

Distributed simulation protocol: Distributed Interactive Simulation (DIS) [IEEE, 1995]

- Development history
 - Developed from SIMNET, beginning early 1990s
 - Exploited lessons learned from SIMNET
- Characteristics
 - Mounted combat (primarily)
 - Distributed, virtual, entity level, real-time
 - Heterogeneous, non-proprietary
 - Open protocol standard development process
- Used for multiple simulation systems

Basic concepts of DIS

- Simulation nodes
 - Multiple distributed simulators, simulations, utilities
 - Exchange messages via a network (LAN)
- Network messages
 - Conform to predefined standard protocol
 - Called Protocol Data Units (PDUs)
 - Transmitted broadcast (UDP/IP, TCP/IP)
- Message purposes
 - Report entity state (movement, status)
 - Mediate interactions between entities
 - Manage or control simulation execution

Main parts of DIS protocol [Loper, 1995]

- Data items to be passed
- Format of data items
 - e.g., int vs. float, value enumerations
- Grouping of data items into messages (PDUs)
- Conditions for sending PDUs
 - Specific to PDU type
- Processing to perform upon receiving PDUs
 - Specific to PDU type
- Key algorithms to be shared among nodes
 - e.g., dead reckoning

Most common DIS PDU types

- Entity State
 - Announce entity existence, location, movement, and appearance
- Fire
 - Announce that entity has fired a weapon
 - Important for rendering muzzle flashes
- Detonation
 - Announce that round has hit entity or terrain
- Collision
 - Exchanged between colliding entities

Example DIS interaction: direct fire

- Entities interact by exchanging PDUs
- Protocol defines PDU sequence for interaction

Distributed simulation protocol: High Level Architecture [Dahmann, 1998b] [Möller, 2012]

- Architecture
 - Distributed simulation systems assembled by connecting nodes via network and protocol
- Flexibility
 - No fixed protocol can serve all users' needs, nor can all future applications be anticipated
 - Protocol must allow customization
 - Intended to be general purpose protocol [Dahmann, 1998a]
- Separation of functionality
 - Application-specific (i.e., data definition)
 - General infrastructure (i.e., data transport)

HLA specifications

- Rules [IEEE, 2010a]
- Object Model Template [IEEE, 2010c]
- Interface Specification [IEEE, 2010b]

HLA terms

- Federate; individual node in distributed simulation system (simulation or utility)
- Federation; set of interoperating nodes

- Object Model; specification of data to be exchanged by a federation
- Run-Time Infrastructure (RTI); software that supports exchange of data in federation
- RTI service; specific capability provided by RTI

HLA Rules

- Define responsibilities and restrictions
- 10 rules total
- 5 rules each for federates and federations

HLA object models

- Define data to be sent and received in federation
- Object classes and attributes
 - Persistent objects
 - Hierarchy, single inheritance
- Interaction classes and parameters
 - Non-persistent interactions between objects
 - Hierarchy, single inheritance
- Documented per Object Model Template
- Similar, not same, as "object-oriented"
- Special object models
 - Federation Object Model (FOM); OM for federation
 - Simulation Object Model (SOM); OM for federate

HLA Interface Specification

- Purpose
 - Formal definition of operations ("services") used to exchange simulation and control information in a federation execution
 - Formal specification of interface between RTI and federates, defined as a set of functions with API
- Interface Specification and the RTI
 - Interface Spec; defines services and software interface to use them
 - RTI; implements and executes the services

Service Category	Functionality	Services 1516-2010
Federation Management	Create, control, destroy federation executions Join and resign federation executions Pause, resume, checkpoint, restart	31
Declaration Management	Announce intent to send or receive object and interaction information	12
Object Management	Create and delete objects Send and receive object attribute updates Send and receive interactions	29
Ownership Management	Transfer ownership of object attributes between federates	18
Time Management	Control and synchronize simulation time	23
Data Distribution Management	Filter data sent between federates	12
Support	Provide infrastructure status information to federates	43

Run-Time Infrastructure (RTI)

- Not a part of the definition of HLA
- Software realization of the HLA definition
- Provides run-time support to federation
 - Transports data between federates
 - Controls federation execution
 - Manages simulation time

Logical view of a federation

- Federates send data to and receive data from RTI, via services
- RTI is intermediary between federates

Technical view of a federation

- LRC integrated into each federate
- Federate passes data to/from LRC via services; LRCs exchange data via network
- CRC handles special services

LRC = Local RTI Component CRC = Central RTI Component

HLA standards

- DoD 1.3
 - Original HLA standard
 - Initial RTI and HLA software implemented in DoD 1.3
 - DoD 1.3 software no longer supported
 - No longer in use?
- IEEE 1516-2000
 - Developed from DoD 1.3
 - Many improvements [DMSO, 2004] [Morse, 2004]
 - Widely used
 - Federates, federations, tools, products available
- HLA 1516-2010
 - Developed from IEEE 1516
 - Standardized 2010 [IEEE, 2010a] [IEEE, 2010b] [IEEE, 2010c]

Conclusion

Summary

- CMSP: professional certification for M&S
- Renewed exam
 - Topical coverage of M&S Body of Knowledge
 - Questions traceable to authoritative sources
- Examination delivered via custom web system
- Content comprehensive of M&S

References

- [Balci, 1981] O. Balci and R. G. Sargent, "A Methodology for cost-risk analysis in the statistical validation of simulation models", *Communications of the ACM*, Vol. 27, No. 4, pp. 190-197.
- [Balci, 1985] O. Balci and R. E. Nance, "Formulated problem verification as an explicit requirement of model credibility", *Simulation*, Vol. 45, No. 2, pp. 76-86.
- [Balci, 1998] O. Balci, "Verification, Validation, and Testing", in J. Banks (Editor), *Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice*, John Wiley & Sons, New York NY, 1998, pp. 335-393.
- [Balci, 2002] O. Balci, R. E. Nance, J. D. Arthur and W. F. Ormsby, "Expanding Our Horizons in Verification, Validation, and Accreditation Research and Practice", *Proceedings of the 2002 Winter Simulation Conference*, San Diego CA, December 8-11 2002, pp. 653-663.
- [BanksC, 2010] C. M. Banks, "Introduction to Modeling and Simulation", in J. A. Sokolowski and C. M. Banks (Editors), Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains, John Wiley and Sons, Hoboken NJ, 2010, pp. 1-24.
- [BanksJ, 1998] J. Banks (Editor), Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice, John Wiley & Sons, New York NY, 1998.
- [BanksJ, 2010] J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol, *Discrete-Event System Simulation, Fifth Edition*, Prentice Hall, Upper Saddle River NJ, 2010.
- [Barker, 1971] A. J. Barker, Midway: The Turning Point, Ballantine Books, New York NY, 1971.
- [Belfore, 2004] L. A. Belfore, J. J. Garcia, E. K. Lada, M. D. Petty, and W. P. Quinones, "Capabilities and Intended Uses of the Joint Operations Feasibility Tool", *Proceedings of the Spring 2004 Simulation Interoperability Workshop*, Arlington VA, April 18-23 2004, pp. 596-604.
- [Bollay, 1951] W. Bollay, "Theory of Models", in L. S. Marks (Editor), *Mechanical Engineers' Handbook*, McGraw-Hill, New York NY, 1951.
- [Brase, 2009] C. H. Brase and C. P. Brase, *Understandable Statistics: Concepts and Methods, Ninth Edition,* Houghton Mifflin, Boston MA, 2009.

- [Cellier, 1991] F. E. Cellier, Continuous System Modeling, Springer-Verlag, New York NY, 1991
- [Ceranowicz, 1999] A. Ceranowicz, M. Torpey, B. Helfinstine, D. Bakeman, J. McCarthy, L. Messerschmidt, S. McGarry, and S. Moore, "J9901, Federation Development for Joint Experimentation", *Proceedings of the Fall 1999 Simulation Interoperability Workshop*, Orlando FL, September 12-17 1999.
- [Colley, 2010] W. N. Colley, "Modeling Continuous Systems", in J. A. Sokolowski and C. M. Banks (Editors), Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains, John Wiley & Sons, Hoboken NJ, 2010, pp. 99-130.
- [Colwell, 1999] R. R. Colwell, "Beyond Barcodes: Wisdom in the Age of Information", *Remarks at the National Press Club*, April 29 1999, Online at https://www.nsf.gov/news/speeches/colwell/rc990429npc.htm, Accessed July 19 2015.
- [Colwell, 2000] R. R. Colwell, "Information Technology: Ariadne's Thread Through the Science and Technology Labyrinth", *EDUCAUSE Review*, May/June 2000, Online at https://net.educause.edu/ir/library/pdf/erm0030.pdf, Accessed July 19 2015.
- [Dahmann, 1998a] J. S. Dahmann, F. Kuhl, and R. Weatherly. "Standards for Simulation: As Simple as Possible But Not Simpler: The High Level Architecture for Simulation," SIMULATION, Vol. 71, No. 6, pp. 378-387, December 1998.
- [Dahmann, 1998b] J. S. Dahmann, R. M. Fujimoto, and R. M. Weatherly, "The DoD High Level Architecture: An Update", *Proceedings of the 1998 Winter Simulation Conference*, December 13-16 1998, Washington DC, pp. 797-804.
- [Davis, 1995] P. K. Davis. Aggregation, Disaggregation, and the 3:1 Rule in Ground Combat, RAND MR-638-AF/A/OSD, 1995.
- [DMSO, 2004] Defense Modeling and Simulation Office, *Transition of the DoD High Level Architecture to IEEE Standard 1516*, Technical Report, October 21 2004.
- [DOD, 1996] Department of Defense Instruction 5000.61, DoD Modeling and Simulation (M&S) Verification, Validation, and Accreditation (VV&A), April 29 1996.
- [DOD, 2009] Department of Defense, Instruction 5000.61, M&S VV&A, 2009.
- [DOD, 2011] Department of Defense, Modeling and Simulation (M&S) Glossary, October 1 2011.

- [Epstein, 1996] J. M. Epstein and R. Axtell, *Growing Artificial Societies: Social Science from the Bottom Up*, Brookings Institution Press, Washington DC, 1996.
- [Filiposka, 2011] S. Filiposka and D. Trajanov, "Terrain-aware three dimensional radio-propagation model extension for NS-2", *SIMULATION: Transactions of the Society for Modeling and Simulation International*, Volume 87, Numbers 1–2, January–February 2011, pp. 7-23.
- [Fishwick, 1995] P. A. Fishwick, *Simulation Model Design and Execution: Building Digital Worlds,* Prentice-Hall, Upper Saddle River NJ, 1995.
- [Fritzon, 2004] P. Fritzon, Principles of Object-Oriented Modeling and Simulation with Modelica 2.1, IEEE Press, Piscataway NJ, 2004
- [Fuchida, 1955] M. Fuchida and M. Okumiya, *Midway: The Battle that Doomed Japan, The Japanese Navy's Story*, Naval Institute Press, Annapolis MD, 1955.
- [Gersting, 2003] J. L. Gersting, *Mathematical Structures for Computer Science, A Modern Treatment of Discrete Mathematics, Sixth Edition*, W. H. Freeman, New York NY, 2003.
- [Greasley, 1998] A. Greasley, Enabling a Simulation Capability in the Organization, Springer-Verlag, London UK, 1998.
- [Gross, 1999] D. C. Gross, *Report from the Fidelity Implementation Study Group*, SISO-REF-002-1999, Simulation Interoperability Standards Organization, 1999.
- [Haefner, 2005] J. W. Haefner, *Modeling Biological Systems: Principles and Applications*, Springer Science+Business Media, New York NY, 2005.
- [Han, 2012] Z. Han, J. Deng, J. Liu, K. Zhang, and W. Song, "Design of Laminar Supercritical Airfoils Based on Navier-Stokes Equations", *Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences*, Brisbane Australia, September 23-28 2012.
- [Helfinstine, 2001] B. Helfinstine, D. Wilbert, M. Torpey, and W. Civinskas, "Experiences with Data Distribution Management in Large-Scale Federations", Proceedings of the Fall 2001 Simulation Interoperability Workshop, Orlando FL, September 9-14 2001.

- [IEEE, 2010a] Institute for Electrical and Electronic Engineers, *IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) Framework and Rules*, IEEE Std 1516TM-2010, August 18 2010.
- [IEEE, 2010b] Institute for Electrical and Electronic Engineers, *IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) Federate Interface Specification*, IEEE Std 1516.1TM-2010, August 18 2010.
- [IEEE, 2010c] Institute for Electrical and Electronic Engineers, *IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) Object Model Template (OMT) Specification*, IEEE Std 1516.2TM-2010, August 18 2010.
- [JFCOM, 2007] U. S. Joint Forces Command, *JTLS Executive Overview*, July 2007, On-line at www.rolands.com, Accessed June 4 2008.
- [Kang, 1998] K. Kang and R. J. Roland, "Military Simulation", in J. Banks (Editor), *Handbook of Simulation*, John Wiley & Sons, New York NY, 1998.
- [Lanchester, 1956] F. W. Lanchester, "Mathematics in Warfare", in J. R. Newman (Editor), *The World of Mathematics,* Vol. 4, Simon & Schuster, New York NY, 1956, pp. 2138-2157.
- [Loper, 1995] M. L. Loper, "Introduction to distributed interactive simulation", in T. L. Clarke (Editor), *Distributed Interactive Simulation Systems for Simulation and Training in the Aerospace Environment*, SPIE Optical Engineering Press, Bellingham WA, 1995, pp. 3-15.
- [Malik, 2015] A. A. Malik, "Exploring Creativity and Urban Development through Agent-Based Modeling", Online at http://css.gmu.edu/CreativeCity/, Accessed November 27 2015.
- [McKenzie, 2010] F. D. McKenzie, "Systems Modeling: Analysis and Operations Research", in J. A. Sokolowski and C. M. Banks (Editors), *Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains*, John Wiley & Sons, Hoboken NJ, 2010, pp. 147-180.
- [Minsky, 1965] M. L. Minsky, *Matter, Mind and Models*, Artificial Intelligence Memo No. 77, Massachusetts Institute of Technology, March 1965, Online at http://dspace.mit.edu/bitstream/handle/1721.1/6119/AIM-077.pdf ?sequence=2, Accessed, July 19 2015.
- [Möller, 2012] B. Möller, et al, *The HLA Tutorial: A Practical Guide for Developing Distributed Simulations*, Pitch Technologies, Linkoping Sweden, 2012.

- [Morse, 2004] K. L. Morse and M. D. Petty, "High Level Architecture Data Distribution Management Migration from DoD 1.3 to IEEE 1516", Concurrency and Computation: Practice and Experience, Vol. 16, Iss. 15, December 2004, pp. 1527-1543.
- [Ören, 2009] T. I. Ören, "Uses of Simulation", in J. A. Sokolowski and C. M Banks, (Editors), *Principles of Modeling and Simulation: A Multidisciplinary Approach*, John Wiley and Sons, Hoboken NJ, 2009, pp. 153-179.
- [Petty, 2009a] M. D. Petty, "Behavior Generation in Semi-Automated Forces", in D. Nicholson, D. Schmorrow, and J. Cohn (Editors), The PSI Handbook of Virtual Environment Training and Education: Developments for the Military and Beyond, Volume 2: VE Components and Training Technologies, Praeger Security International, Westport CT, 2009, pp. 189-204.
- [Petty, 2009b] M. D. Petty, "Verification and Validation", in J. A. Sokolowski and C. M. Banks (Editors), *Principles of Modeling and Simulation: A Multidisciplinary Approach*, John Wiley & Sons, Hoboken NJ, 2009, pp. 121-149.
- [Petty, 2010] M. D. Petty, "Verification, Validation, and Accreditation", in J. A. Sokolowski and C. M. Banks (Editors), Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains, John Wiley & Sons, Hoboken NJ, 2010, pp. 325-372.
- [Petty, 2012] M. D. Petty, G. S. Reed, and W. V. Tucker, "Topics, Structure, and Delivery of the New Certified Modeling and Simulation Professional Examination", *Proceedings of the Spring 2012 Simulation Interoperability Workshop*, Orlando FL, March 26-30 2012, pp. 188-195.
- [Piersall, 2014] C. H. Piersall and F. E. Grange, "The Necessity of Intended Use Specification for Successful Modeling and Simulation of System-of-Systems", *CrossTalk*, September/October 2014, pp. 20-24.
- [Salmon, 2009] F. Salmon, "Recipe for Disaster: The Formula That Killed Wall Street", *Wired*, Vol. 17, No. 3, March 2009.
- [Sokolowski, 2010] J. A. Sokolowski and C. M. Banks (Editors), *Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains*, John Wiley & Sons, Hoboken NJ, 2010.
- [Spenser, 2010] J. Spenser, "The Virtual Sky", Boeing Frontiers, Vol. IX, Iss. VI, October 2010, pp. 16-21.
- [Stewart, 2008] J. Stewart, Single Variable Calculus: Early Transcendentals, Sixth Edition, Thomson Brooks/Cole, Belmont CA, 2008.

- [Strickland, 2011] J. S. Strickland, *Mathematical Modeling of Warfare and Combat Phenomenon*, Lulu, Raleigh NC, 2011.
- [Tolk, 2012] A. Tolk (Editor), *Engineering Principles of Combat Modeling and Distributed Simulation*, John Wiley & Sons, Hoboken NJ, 2012.
- [Velten, 2009] K. Velten, Mathematical Modeling and Simulation, WILEY-VCH, Weinheim Germany, 2009.
- [Waltz, 2010] E. Waltz, "Emerging Techniques and Tools", in A. Kott and G. Citrenbaum (Editors), *Estimating Impact*, Springer, New York NY, 2010.
- [Wikipedia, 2011] Wikipedia contributors, "DEVS", Wikipedia, The Free Encyclopedia, July 28 2011.
- [Zeigler, 2000] B. P. Zeigler, H. Praehofer, and T. G. Kim, *Theory of Modeling and Simulation, Second Edition*, Academic Press, 2000.
- [Zhang, 2008] W. Zhang, F. Li, Z. Wu, and R. Li, "Emulation of Rocket Trajectory Based on a Six Degree of Freedom Model", Proceedings of the Seventh International Symposium on Instrumentation and Control Technology: Measurement Theory and Systems and Aeronautical Equipment, Proceedings of the SPIE Vol. 7128, Beijing China, October 10 2008, doi:10.1117/12.806878.

End notes

- Additional information regarding exam structure M. D. Petty, G. S. Reed, and W. V. Tucker, "Topics, Structure, and Delivery of the New Certified Modeling and Simulation Professional Examination", *Proceedings of the Spring 2012 Simulation Interoperability Workshop*, Orlando FL, March 26-30 2012, pp. 188-195.
- Additional information regarding exam content
 - Online UAH PCS courses: http://www.uah.edu/pcs/professionaldevelopment/engineering?target=index&categoryId=10416
 - Custom short courses
- Contact information
 - Mikel D. Petty, Ph.D.
 - University of Alabama in Huntsville
 - 256-824-6140 pettym@uah.edu